| 4.8°C Dublin

Dust the job: Atomic breakthrough aims to reveal lunar secrets

Close

Pioneer: Buzz Aldrin on the Moon during the Apollo 11 mission in 1969. Photo: Neil Armstrong/NASA

Pioneer: Buzz Aldrin on the Moon during the Apollo 11 mission in 1969. Photo: Neil Armstrong/NASA

Pioneer: Buzz Aldrin on the Moon during the Apollo 11 mission in 1969. Photo: Neil Armstrong/NASA

A new technique could provide major insights into the Moon's surface.

The approach, which should allow researchers to find new breakthroughs in pieces of lunar rock which have been here nearly 50 years, involves analysing the rocks at a minute level in the hope of learning about the Moon.

It could also help future astronauts who Nasa hopes can live on the Moon's surface in a lunar base, by allowing them to find important materials in the ground.

When the last astronauts arrived on the Moon in 1972, they brought back important samples, like those before them. They were to be the last pieces of the lunar surface to come back to Earth, since humanity has not been back in the near 50 years since.

That means the remaining samples are precious since they are so limited.

Now researchers have found a new approach which could make the most of those limited samples as well as shedding new light on what they mean, by taking only a single piece of dust.

"We're analysing rocks from space, atom by atom," said Jennika Greer, the research paper's first author and a PhD student at the Field Museum and University of Chicago.

"It's the first time a lunar sample has been studied like this. We're using a technique many geologists haven't even heard of."

As researchers make use of the new technique, they expect to find a vast set of new information about the lunar surface.

"We can apply this technique to samples no one has studied," said Philipp Heck, a curator at the Field Museum, associate professor at the University of Chicago, and co-author of the paper.

"You're almost guaranteed to find something new or unexpected. This technique has such high sensitivity and resolution, you find things you wouldn't find otherwise and only use up a small bit of the sample."

The technique is called atom probe tomography, and involves incredibly precise manipulation of individual grains. It has previously been used in industrial processes but the new breakthrough has come in turning it for the first time to lunar samples.

It works something like "nanocarpentry", said Professor Heck, "like a carpenter shapes wood, we do it at the nanoscale to minerals".

The sample is placed inside a special probe and shot with a laser which knocks off individual atoms, which then fall on to a special plate. Researchers can examine those elements by timing how long they take to hit the detector - heavier ones take longer - and so the type of atom can be worked out.

It has already helped researchers see the weathering and materials found inside the lunar soil. That in turn could help future astronauts as they move to live on the Moon, since they could survive by taking resources out of that dust.

The researchers now hope they can get hold of samples from elsewhere on the Moon, and elsewhere in space, to allow them to better understand the make-up of the worlds that surround us.

They compare our current understanding to analysing Earth using only one mountain range. To get a fuller grasp, they will need to examine a variety of terrains across the solar system.

Irish Independent